
Reasoning about Regular Properties:
A Comparative Study

Tomáš Fiedor, Lukáš Holı́k(�), Martin Hruška,
Adam Rogalewicz, Juraj Sı́č, and Pavol Vargovčı́k

Brno University of Technology
{ifiedortom,holik,ihruska,rogalew,sicjuraj,ivargovcik}@fit.vutbr.cz

Abstract. Several new algorithms for deciding emptiness of Boolean combina-
tions of regular languages and of languages of alternating automata have been
proposed recently, especially in the context of analysing regular expressions and
in string constraint solving. The new algorithms demonstrated a significant po-
tential, but they have never been systematically compared, neither among each
other nor with the state-of-the art implementations of existing (non)deterministic
automata-based methods. In this paper, we provide such comparison as well as
an overview of the existing algorithms and their implementations. We collect a
diverse benchmark mostly originating in or related to practical problems from
string constraint solving, analysing LTL properties, and regular model checking,
and evaluate collected implementations on it. The results reveal the best tools and
hint on what the best algorithms and implementation techniques are. Roughly,
although some advanced algorithms are fast, such as antichain algorithms and
reductions to IC3/PDR, they are not as overwhelmingly dominant as sometimes
presented and there is no clear winner. The simplest NFA-based technology may
sometimes be a better choice, depending on the problem source and the imple-
mentation style. We believe that our findings are relevant for development of
automata techniques as well as for related fields such as string constraint solving.

1 Introduction

Efficient representation of regular properties of finite words has been the subject of
research for a long time, with applications and results spanning much of the field of for-
mal reasoning, including regular expression matching, verification, testing, modelling,
or general decision procedures of logics. When regular properties are combined using
Boolean and similar operations, interesting decision problems are PSPACE-complete.
This includes the most essential problem of language emptiness (further just emptiness).
The textbook approaches that use deterministic automata are plagued by state space ex-
plosion. Determinization and complementation is done by exponential subset construc-
tion and conjunction is quadratic. This motivated the research on efficient algorithms
for non-deterministic and alternating finite automata (NFA and AFA, respectively).

Using nondeterminism and alternation, one can gain one or two levels of exponen-
tial savings in the size of automata, respectively. Alternation in context of automata was
first studied in [24] and [18,53,38], and extensively in the context of automata over infi-
nite words and temporal logics (e.g., [66,58,76,57]). It adds conjunctive branching to the



2 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

disjunctive non-deterministic branching and allows to avoid the blow-up in the automata
size completely. However, from the perspective of the worst case complexity, the gained
succinctness is payed back by the PSPACE-completeness of language emptiness. Still,
the more succinct the representation gives more opportunities for clever heuristics that
combat the worst case complexity and work in practical cases, essentially by avoiding
re-creation of the entire (non)deterministic representation.

Several very promising techniques and their implementations were proposed during
the recent years. The latest advances in testing AFA emptiness appeared in the context
of analysing combinations of regular expressions and in string solving. A group of these
techniques is based on reducing AFA emptiness to a reachability in a Boolean transi-
tion systems and using existing implementations of model-checking algorithms, most
notably of IC3/PDR [46,15], such as ABC [17], nuXmv [22], or IC3Ref [16], to solve
it [28,27,47,80]. The most recent contribution from [73] extends the SMT-solver Z3
with symbolic derivatives, a generalisation of Antimirov derivatives of regular expres-
sions. Z3 uses them to convert a combination of regular expressions into an alternat-
ing/Boolean automaton and on the fly tests its language emptiness through the classical
de-alternation and a search for an accepting configuration.

Slightly older algorithm for testing equivalence of AFA (convertible to an emptiness
test) is based on computing bisimulation up-to congruence [30]. It generalizes the orig-
inal NFA-equivalence test of [11]. The congruence closure algorithms were preceded
by the antichain algorithms that optimize the subset construction by the subsumption
pruning [82,41], and by the first attempt to use the model checking algorithms, namely
the algorithm Impact of [63], to emptiness of combinations of regular properties [40].
Lastly, the area of string constraint solving gave rise to a large variety of string con-
straint solvers. They approach combinations of regular properties through a spectrum of
clever techniques based e.g. on automata, transformations to other types of constraints,
reasoning on lengths of strings, Parikh images, etc. (e.g. Z3 [65,73], CVC4/5 [7,68],
Z3Str4 [9], OSTRICH [25,26], Trau [5,4] to name a few).

These works demonstrate a significant promise, but they are presented in specific,
often narrow contexts and under varying views on state of the art. Consequently, they
have never been sufficiently compared against each other. Even comparisons against
the most efficient implementations of the more standard techniques based on (non)de-
terministic automata is rare. String solvers were compared only against string solvers,
advanced AFA-emptiness tests were compared only against the basic de-alternation.
A somewhat interesting comparison was done only between NFA-antichain and up-to
congruence-based language inclusion and equivalence test in [11] and in [39], and be-
tween the basic antichain based AFA emptiness and a version that uses abstract interpre-
tation [41]. A number of works also take as their baseline implementations of automata
or string solvers which, even though being respectable tools in their own right, are cur-
rently not the fastest solvers of combinations of regular properties in either category.
On top of that, all the mentioned works on solving combinations of regular properties
use only narrow benchmarks, often mutually exclusive.

Systematic comparisons of tools and algorithms on meaningful benchmarks is obvi-
ously needed to answer the questions ‘What to use?’ and ‘What to compare with?’, and
generally for the field of reasoning about regular properties and automata to progress.
We thus present a comparison of implementations of major algorithms. We compare



Reasoning about Regular Properties: A Comparative Study 3

the tools on a large benchmark of problems that we have collected from other works,
from string constraint solving problems, analysis of regular expressions, regular model
checking, and analysing LTL properties of systems. We believe that it is currently the
most comprehensive benchmark in existence. Our main focus is on examples around
string solving and analysis of regular expressions, which is also where the most of the
recent developments has happened. These benchmarks mostly allow for a relatively
simple representations of automata transition functions. Even though the alphabets in
examples coming form this are large (e.g. UNICODE with up to 232 symbols), the al-
phabet size can, in most cases, be reduced to few symbols by working with alphabet
minterms (classes of indistinguishable symbols) instead of individual symbols. The is-
sue of effective symbolic representation of transition relations with large alphabets then
does not dominate the evaluation, although it would be critical in other application ar-
eas, such as deciding WS1S (monadic second-order logic of one successor) or linear
integer arithmetic [20,81,44].

We have obtained results that paint the basic landscape of the available techniques
and tools. They identify tools and approaches which are likely to work well and should
be used as the baseline in comparisons. We also provide a relatively diverse and large
benchmark to be used in comparisons. The results broadly confirm that the new algo-
rithms represent a leap in efficiency compared to the technology of DFA and also make
a reduction of a problem to language emptiness of alternating automaton an attractive
option. On the other hand, they challenge some folklore knowledge and conclusions
implied elsewhere. For instance, reductions to IC3/PDR, although yielding one of the
fastest algorithm, are not as vastly superior as sometimes presented. Some practically
relevant benchmark categories are best solved by a combination of an antichain al-
gorithm with a SAT solver. Others, surprisingly many in fact, by a simple efficiency
oriented implementation of basic algorithms for nondeterministic automata. Our results
also underscore that there is no universal silver bullet. The particular kind of the prob-
lem, determined to a large degree by its source, is a decisive factor that should be taken
into account when choosing and tuning a solver.

We will maintain and further grow the benchmark set, at GitHub [1], as well as
the framework for the entire comparison, at [2], in order for it to be easily usable and
extensible by others.

2 Preliminaries

A (nondeterministic) finite automaton (NFA) over Σ is a tuple A = (𝑄,Δ, 𝐼, 𝐹) where
𝑄 is a finite set of states, Δ is a set of transitions of the form 𝑞−{𝑎}→𝑟 with 𝑞,𝑟 ∈ 𝑄 and
𝑎 ∈ Σ, 𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final states. A run of A
over a word 𝑤 ∈ Σ∗ is a sequence 𝑝0−{𝑎1}→𝑝1−{𝑎2}→ . . .−{𝑎𝑛}→𝑝𝑛 where for all 1 ≤ 𝑖 ≤ 𝑛,
it holds that 𝑎𝑖 ∈ Σ∪ {𝜖}, 𝑤 = 𝑎1 · 𝑎2 · · ·𝑎𝑛, and either 𝑝𝑖−1−{𝑎𝑖}→𝑝𝑖 ∈ Δ or 𝑝𝑖−1 = 𝑝𝑖 ,
𝑎𝑖 = 𝜖 . The run is accepting if 𝑝0 ∈ 𝐼 and 𝑝𝑛 ∈ 𝐹, and the language 𝐿 (A) of A is the
set of all words for which A has an accepting run.

The automaton is deterministic (DFA) if for every state 𝑞 and symbol 𝑎, Δ has at
most one transition 𝑞−{𝑎}→𝑟 . Any NFA can be determinized by the subset construction,
which creates the DFA 𝐴′ = (2𝑄,Δ′, {𝐼}, {𝑆 | 𝑆∩ 𝐹 ≠ ∅}) where 𝑆−{𝑎}→𝑆′ ∈ Δ′ iff 𝑆′ =
{𝑠′ | 𝑠 ∈ 𝑆∧ 𝑠−{𝑎}→𝑠′ ∈ Δ}. The basic automata constructions implementing Boolean op-
erations with languages are intersection, A∩A′ = (𝑄 ×𝑄′,Δ× , 𝐼 × 𝐼 ′, 𝐹 × 𝐹′) where



4 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

(𝑞, 𝑞′)−{𝑎}→(𝑟,𝑟 ′) ∈ Δ× iff 𝑞−{𝑎}→𝑟 ∈ Δ and 𝑞′−{𝑎}→𝑟 ′ ∈ Δ′, non-deterministic union A∪
A′ = (𝑄∪𝑄′,Δ∪Δ′, 𝐼 ∪ 𝐼 ′, 𝐹 ∪𝐹′), deterministic union by product which is the same
as ∩ up to that the final states are 𝐹 ×𝑄∪𝑄 ×𝐹, and complementation which consists
of determinization and complementing the final states.

Alternating automata. An alternating finite automaton (AFA) in the most general form
would be a tuple M = (Σ,P,𝑄, 𝛿, 𝐼, 𝐹) where, when denoting B(𝑋) the Boolean pred-
icate formulae over variables 𝑋: 1) Σ is a finite alphabet; 2) P is a set of unary symbol
predicates with a free variable 𝛼; 3) 𝑄 is a finite set of states; 4) 𝛿 : 𝑄 → B(𝑄 ∪P) is
a transition function where states of 𝑄 have only positive occurrences 5) 𝐼 ∈ B(𝑄) is a
positive initial condition; and 6) 𝐹 ∈ B(𝑄) is a negative final/accepting condition. 1

It can be interpreted as the forward NFA 𝐴f = (Σ,P(𝑄),Δf, 𝐼 ′, 𝐹′) with states 𝑐 ⊆ 𝑄

called configurations of 𝐴. Assume many sorted interpretation of formulae over vari-
ables 𝑄 of the type Boolean (values 0 and 1) and the variable 𝛼 of the type Σ. A set
of states 𝑐 ⊆ 𝑄 is understood as an assignment 𝑄 → {0,1} in which 𝑐(𝑞) = 1 corre-
sponds to 𝑞 ∈ 𝑐. A pair (𝑐, 𝑎), 𝑎 ∈ Σ is understood as the same assignment extended
with 𝛼 ↦→ 𝑎. The satisfaction relation |= between a formula and a configuration 𝑐 or
a pair (𝑐, 𝑎) is defined as usual. The transition relation Δf then contains a transition
𝑐−{𝑎}→𝑐′ iff (𝑐′, 𝑎) |=∧

𝑞∈𝑐Δ(𝑞), and 𝐼 ′ and 𝐹′ are the sets of configurations that satisfy
𝐼 and 𝐹, respectively. It is common to define Δf to contain only the smallest transitions,
that is, for a given 𝑐 and 𝑎, only the transitions 𝑐−{𝑎}→𝑐′ with the ⊆-minimal target 𝑐′ are
in Δ.2 The language of 𝐴, 𝐿 (𝐴), is the language of 𝐴f.

The AFA can equivalently be interpreted as the backward NFA, the automaton 𝐴b =

(Σ,P(𝑄),Δb, 𝐼 ′, 𝐹′) where 𝑐−{𝑎}→𝑐′ ∈ Δb if (𝑐, 𝑎) |= Δ(𝑞) for each 𝑞 ∈ 𝑐. Here it is
enough to take, for a given 𝑐′ and 𝑎, only the transition with the ⊆-largest source 𝑐3

(this makes the transition relation backward deterministic).

Boolean automata. Alternating automata may be extended to Boolean finite automata
(BFA) by allowing any Boolean combination in the initial, final, and transition formulae
(states in the initial and transition formulae may occur negatively, states in the final
formula may occur positively). Note that the extension of AFA to BFA is not dramatic,
as a BFA is easily encoded as an AFA with only double the size, by the following steps:
1) for each 𝑞 ∈ 𝑄, add state 𝑞 with Δ(𝑞) = ¬Δ(𝑞), 2) transform all formulas in 𝐼, 𝐹,Δ

to DNF, 3) replace all literals ¬𝑞 by 𝑞 in Δ and 𝐼 and replace literals 𝑞 by ¬𝑞 in 𝐹.

Restricted forms of AFA transition relation. The general form of AFA, as defined above,
is the most succinct. It provides space for most optimizations, such as in [77]. Automata
in this form are generated from LTL conversions of [34] used in [30,77]. On the other
hand, only a small subset of algorithms and tools support AFA in this most liberal
form. A common restriction (used e.g. in [30]) is to separate symbols from states in the
transition formulae, that is, having Δ(𝑞) in the form 𝜑∧𝜓 with 𝜑 ∈ B(P),𝜓 ∈ B(𝑄).
1 This is not a most standard definition of AFA but it allows us to later cover and categorize their

common syntactic variants. See e.g. [41,18,57] for more standard definitions.
2 A state in a configuration is understood as a constraint. The less constraints, the more can be

accepted from the configuration. Transitions to more constrained configurations are useless.
3 Going backward, larger configurations are more permissive. Transitions from the same target

with smaller configurations are useless.



Reasoning about Regular Properties: A Comparative Study 5

We call such AFA separated. The transition relation can then be seen as a function
𝑄 → B(P) ×B(𝑄). Separated AFA are often considered with the state formula 𝜓 in the
disjunctive normal form (e.g. in [36,41]), which we call the DNF form, and Δ then may
be seen as a set of transitions of the form 𝑞−{𝜑}→𝑐 where

∧
𝑐 is a (positive) clause of 𝜓.

The decision problems. We will concentrate on two decision problems:
(1) AFA emptiness asks whether the language of the given AFA is empty.
(2) Emptiness of Boolean combinations of regular properties (BRE), asks whether a
Boolean combination of regular languages, given as automata or regular expressions,
is empty (languages can be combined with ∩, ∪, and complement wrt. Σ∗, which also
covers testing inclusion and equivalence4).

3 Existing Algorithms and Tools

In this section, we will overview the existing approaches and tools implementing AFA
and BRE emptiness.

3.1 Representation of Automata Transition Relations

In the simplest form, a predicate on a automata transition represents a single letter
from the alphabet. This is called an explicit transition. Explicit automata are simple,
allow for low level optimizations, and implementation of complex algorithms for them
is manageable (such as advanced algorithms for computing simulations [70,50,23]).
The technique of a-priori mintermization, that replaces the alphabet by the alphabet of
minterms, classes of indistinguishable symbols, makes explicit automata usable also
when alphabets are large. However, when the number of minterms tends to explode,
explicit automata do not scale.

Various implementations of automata have been using transition predicates imple-
mented as BDDs, Boolean formulae, formulae over SMT-theory of bit-vectors, inter-
vals of numbers, etc. This has been systematized in the works on symbolic automata
[79,33,31], where the symbol predicates may be taken from any effective Boolean al-
gebra (and the automata are in the separated form). Even more compact than symbolic
automata are representations of the transition relation used in the WS1S solver MONA
or in some of the implementations of AFA, which in a way drop the restriction to the
separated form. We will discuss the concrete implementations below.

3.2 (Non)deterministic Finite Automata

The baseline approach to solve BRE is to use DFA or NFA. Boolean operations are
implemented as the classical construction listed in Section 2. Automata may be kept
deterministic, or they are kept non-deterministic whenever possible and determinized
only before complementing. An important ingredient of achieving efficiency is usually
to minimize automata at least once every few operations (important e.g. in applications
such as regular model checking [12] or some approaches to string solving [10,25,4]).
The deterministic approaches construct the minimal DFA by the Hopcroft, Moore, Br-
zozowski, or the Huffman algorithm [52,64,19,54], the non-deterministic approach may
use simulation [70,23,45,55,50] or bisimulation [75,69,48] based reduction methods.

4 𝐿′ ⊆ 𝐿 is emptiness of 𝐿′ ∩ 𝐿 and equivalence is emptiness of (𝐿′ ∩ 𝐿) ∪ (𝐿′ ∩ 𝐿).



6 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

Simulation reduces significantly more but is much costlier. DFA/NFA are implemented
in many libraries. Here we select a representative sample.

First, ENFA is the simplest tool, our own implementation of NFA, which was origi-
nally meant to play the role of a baseline. It uses explicit automata with mintermization.
It is implemented in C++, with efficiency in mind, but with no extensive optimizations
(roughly, transitions from a state stored in a two layered data structure, the first layer
divided and ordered by symbols, and the second layer ordered by the target state). It
uses an off the shelf implementation of one of the newest generation algorithms for
computing simulation [70,23,50] (that achieve good efficiency through a usage of the
partition-relation data structure) taken from VATA tree automata library [59] (imple-
menting namely [50]).5

The BRICS automata library [67] is often considered a baseline in comparisons [67].
It uses primarily deterministic automata and transition relation represented symbolically
using character ranges. It is written in Java and relatively optimized.

The AUTOMATA library [78], made in C#, implements symbolic NFA/DFA parame-
trized by an effective Boolean algebra. We use it with the default algebra of BDDs.
AUTOMATA has been long developed and has accumulated many optimizations and
novel techniques for handling symbolic automata (e.g., optimized minimization [32]).

MONA [44], written in C, is the most influential and optimized implementation
of deterministic automata. It specialises in deciding WS1S formulae, which besides
Boolean combinations includes also quantification. The decision procedure generates
DFA with complex transition relations over large alphabets of bit-vectors. For this pur-
pose, MONA uses a compact representation of the transition relation: a single MTBDD
for all transitions originating in a state, with the target states in its leaves. MONA can
represent only a DFA, hence it always implicitly determinizes.

VATA [59], written in C++, is a library implementing non-deterministic tree au-
tomata. As NFA are a special case of tree automata, we can use it as an implementation
of the basic constructions for explicit NFA. It is relatively optimized. We include it into
the comparison for its fast implementation of the antichain inclusion checking [12,49],
which for NFA boils down to the inclusion check of [36].

3.3 Alternating Automata

De-alternation. The basic approach to AFA emptiness is de-alternation, transformation
to an NFA, either the forward 𝐴f or the backward 𝐴b, followed by testing the emptiness
of the resulting NFA. Both NFAs are constructed by a variation on the NFA subset
construction. We are not aware of any tool using pure de-alternation, and we believe
that it would not be competitive. The forward algorithm is however the basis of [73]
used in Z3 where it is run on the fly with a novel symbolic derivative construction
(discussed also in the paragraph on string constraint solvers).

Interpolation based abstraction refinement. Attempts to harness model checking algo-
rithms to AFA emptiness appeared in the context of string solving and processing of
regular expressions. To our best knowledge, the earliest attempt was [40], where con-
junctions of regular constraints were solved using the interpolation-based algorithm of
[62]. The interpolation-based abstraction refinement, namely the algorithm Impact of

5 In our experiment, simulation is only used after parsing and has minimal overall impact.



Reasoning about Regular Properties: A Comparative Study 7

[63], was also used in [56]. This work concentrated on more general problem, solving
emptiness of AFA over data words with an infinite data domain (that can relate past and
current values of data variables). Their tool JALTIMPACT [3] (in Java), that we include
into our comparison, can be run on our benchmark too.

Reduction to reachability and IC3/PDR. The work of [80] presented the first transla-
tion of string constraints (mostly BRE) into reachability in a Boolean transition system
(circuit) that was then solved by the model checker nuXmv [22]. This was de facto the
first reduction of AFA emptiness to reachability in a Boolean transition system (BTS).

Let us briefly overview the basic principle of the reduction. The forward BTS for
an AFA 𝐴 has configurations that are Boolean assignments to 𝑄, initial and final con-
figurations satisfy 𝐼 and 𝐹, respectively, and transitions are given by the formula Φf

Δ
:∧

𝑞∈𝑄 𝑞 → [Δ(𝑞)]′. Here we use [𝜑]′ to denote the formula obtained from 𝜑 by sub-
stituting every state 𝑞 by its primed version 𝑞′, and we will also denote by [𝑐]′ the
primed version {𝑞′ | 𝑞 ∈ 𝑐} of a configuration 𝑐. A successor of a configuration 𝑐 is any
configuration 𝑐 such that [𝑐]′ satisfies ∃𝑄∃𝛼Φf

Δ
∧∧

𝑞∈𝐶 𝑞 (the symbol variable alpha
is of the bit-vector sort). Reachability is then the transitive and reflexive closure of the
successor relation and the reachability problem asks whether a final configuration is
reachable from an initial one. It is the case if and only if 𝐴 is not empty. The forward
reduction has been used in [80]. Alternatively, the backward BTS for 𝐴 has the initial
configurations satisfying 𝐹, final configurations satisfying 𝐼, and the successor relation
given by the formula Φb

Δ
:
∧

𝑞∈𝑄 𝑞′ → Δ(𝑞).
The work [28] applied IC3/PDR [46,15], implemented in IC3Ref [16], together with

the backward BTS reduction to solve emptiness of BRE and obtained very encourag-
ing results. The implementation used in [28], called Qzy, is, however, proprietary and
not publicly available. Similar approach was taken by [47], where a string constraint
was translated to a multi-tape AFA and then to a BTS by the forward translation, and
given to IC3/PDR to solve through tools nuXmv [22] or ABC [17]. Results of [77]
seem to indicate that the backward translation is better and the same is suggested by
the comparison in [28,27] in which the string solver Sloth [47], based on the forward
reduction, was much slower than Qzy, based on the backward reduction. In this com-
parison, we include our own C++ implementation BWIC3 of the backward reduction
based on the model checker ABC.

Antichains. Antichain algorithms presented in [82] were the first breakthrough in solv-
ing BRE. They use subsumption relations between the states of the automata con-
structed by variations of the subset construction to prune the constructions. They were
used to test language universality and inclusion of NFAs and AFA emptiness. The AFA
emptiness namely is based on an on-the-fly search for an accepting state of the 𝐴f or for
an initial state of the 𝐴b. Subsumption prunes discovered states that are larger (smaller
for the backward algorithm) than others.

The antichain algorithms were enhanced and generalized in a number of works,
e.g. with a more aggressive pruning by the simulation-based subsumption [6,36], or by
counterexamples guided abstraction refinement in [41]. In this comparison, we include
the NFA inclusion check implemented in the VATA tree automata library [59]. We
also experimented with a student-made implementation of the antichain AFA empti-
ness check of [41] that uses abstraction refinement (the original implementation is no



8 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

longer maintained and we were not able to run it). However, not being able to achieve a
competitive performance, we excluded it from the comparison. One reason of the poor
performance may be that simplest form of AFA, explicit DNF form (used in the original
version [41]), might be too inefficient and costly to construct in our examples, partly
due to a large number of minterms induced by the AFA emptiness benchmark.

We implemented (in C++) the antichain AFA emptiness test of [36] that integrates
tightly with a SAT solver to handle the general form of AFA with large alphabets. We
will refer to it as ANTISAT. We will briefly explain its principle. It essentially imple-
ments the reachability test for the backward BTS discussed in the previous paragraph.
A configuration 𝑐 is represented by the conjunction 𝜙𝑐 =

∧
𝑞∈𝑄\𝑐¬𝑞. Note that 𝜙𝑐 is

satisfied by the downward closure of 𝑐, which are all configurations included in (sub-
sumed by) 𝑐. To compute predecessors of configurations represented by 𝜙𝑐, the SAT
solver (namely MiniSAT [37]) is called on the formula Φ : Ψb

Δ
∧ 𝜙𝑐 ∧𝜓Ach. Here, 𝜓Ach

excludes all already discovered configurations from the solution. It is a conjunction of
clauses 𝜙𝑐 :

∨
𝑞∈𝑄\𝑐 𝑞 for every previously discovered configuration 𝑐. The SAT solver

discovers a satisfying assignment 𝑒, which is turned into a new configuration 𝑐′ =𝑄∩ 𝑒

(that is, the values of the symbol bits constituting the bit-vector 𝛼 are omitted from
𝑒). Unless 𝑐′ is initial, it is queued for further predecessor computation and is imme-
diately added to 𝜙Ach through the interface of incremental SAT solving as the clause
𝜙𝑐′ . Finally, only maximal predecessors of 𝑐 are of interest, as the non-maximal ones
are subsumed by them. We enforce the maximality of 𝑐 through working directly with
the internal SAT solver structures: at decision points, the SAT solver is forced to give
priority to decisions that assign 1 to state variables.

Bisimulation up-to congruence. A later class of algorithms, here refered to as up-to
algorithms, checks equivalence as a bisimulation between configurations of AFA, and
utilises the up-to congruence technique to prune the search space. The first algorithm on
NFA equivalence [11] was extended to alternating automata emptiness check in [30].
These algorithms are close to antichains. As shown in [11], the pruning potential of
the up-to techniques is in theory the same or larger than that of antichain. A disadvan-
tage of the up-to congruence technique is the need for expensive evaluation of con-
gruence closures. The more extensive experiments of [39] shows antichain algorithms
as faster, with an exception of randomly generated automata with small alphabets and
very dense transition relations. We include into the comparison the Java implemen-
tation of the AFA-emptiness of [30] (emptiness reduces to equivalence with a trivial
empty AFA), that we refer to as BISIM. The other implementations of up-to algorithms
we are aware of, from [39] and [11], are single-purpose programs that decide equiva-
lence of two NFAs, hence we would be able to run them on a very small fraction of
our benchmark only.

3.4 String Constraints Solvers
There are dozens of string constraint solvers that implement, to a various degree, a sup-
port for deciding combinations of regular properties. String languages are rich and BRE
are not the absolute priority of the solvers, hence they perform on them generally worse
than specialised tools. However, string solvers implement a wide scale of unique tech-
niques and pragmatic heuristics that may work in specific instances. Representatives



Reasoning about Regular Properties: A Comparative Study 9

of the solvers with the most mature implementations (also used in most comparisons
in the literature) are Z3 [65,73] and CVC5 [68,7]. CVC5 solves BRE mostly through
rewriting rules. Recently [73] extended Z3 with an approach based on the Antimirov
derivative automata construction generalised to symbolic automata and extended regu-
lar expressions. Essentially, the construction produces a symbolic AFA/BFA and checks
its emptiness on the fly while running the forward de-alternation. As shown in [73], it is
significantly more efficient in solving BRE than other SMT solvers (including CVC5).

3.5 Other Approaches and Tools
Although we believe that we have collected a representative subset of existing algo-
rithms and tools, we have not collected all interesting specimens. Some were not avail-
able, some were difficult to run or prepare the inputs for, some seemed covered by
experimentation in other works. Including these tools and algorithms into the compar-
ison could still be interesting and we leave it for the future work (we plan to keep
extending the tool base as well as the benchmark set). Namely, the tool DPRLE [51],
used in the comparison in [28], seemed to be mostly outperformed by the IC3/PDR
approach implemented in Qzy, however, not absolutely consistently. The implementa-
tion of NFA antichain and up-to congruence techniques used in [39] seems efficient,
with its NFA antichain inclusion twice as fast as that of VATA. The up-to congruence
NFA equivalence checking of [11] could be fast too ([11] and [39] report somewhat
conflicting results). There are numerous NFA/DFA libraries, e.g. the C alternative of
BRICS [61] or the Java implementation of symbolic NFA of [29]. ALASKA [35] might
contain interesting implementations of antichain algorithms but is no longer maintained
and available. Our comparison is missing a basic implementation of antichain-powered
de-alternation for explicit AFA in the DNF form, which, if not overwhelmed by a large
number of minterms, could reach a good performance through simple fast data struc-
tures, similarly to our ENFA.

4 Benchmarks

We collected as comprehensive benchmark as possible, harvesting examples used in
previous works as well as generating some of our own. It is available together with
the whole experiment from [2] and at GitHub [1] (we plan to maintain and grow the
benchmark and welcome contributors).

Our main focus of the current benchmark set is the areas where the most of the
development in solving AFA and BRE emptiness happened recently, which is string
constraint solving and analysis of regular expressions used in analysing and filter-
ing texts. Atomic regular properties are here mostly given in the form of regular ex-
pressions over UNICODE character classes. The alphabet is large but the number of
minterms is mostly small or moderate. This is true also for our examples from regular
model checking. Symbolic handling of complex transition relations over large alpha-
bets is thus not absolutely crucial and the experiment can stay focused on the main
algorithms for emptiness check. For that reason, we do not include benchmarks from
solving WS1S [21], the primary target of MONA, or Presburger arithmetic with au-
tomata [13,81], where the techniques of handling symbolic alphabet are indispensable.
Techniques specialising at this kind of problems would deserve their own study. Our



10 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

benchmarks where the symbolic alphabet representation is still rather important are
AFA coming from (combinations of) LTL properties, with alphabets of sets of atomic
propositions, and from translations of string constraint problems to AFA with complex
multi-track alphabets.6

Boolean combinations of regular expressions. This group of BRE contains benchmarks
on which we can run all tools, including those based on NFA and DFA. They have small
to moderate numbers of minterms (about 30 in average, at most over a hundred).

b-smt contains 330 string constraints from the Norn and SyGuS-qgen, collected in
SMT-LIB benchmark [8], that fall in BRE. These were also used to compare SMT-
solvers in [73].

b-hand-made has 56 difficult handwritten problems from [73] containing membership
in regular expressions extended with intersection and complement. They encode (1)
date and password problems, (2) problems where Boolean operations interact with
concatenation and iteration, and (3) problems with exponential determinization.

b-armc-incl contains 171 language inclusion problems from runs of abstract regular
model checking tools (verification of the bakery algorithm, bubble sort, and a pro-
ducer-consumer system) of [12]. These examples were used also in [39,11].

b-regex contains 500 problems, obtained analogously as in [30,77], of the form 𝑟1 ∧
𝑟2 ∧ 𝑟3 ∧ 𝑟4 = 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5, where each 𝑟𝑖 is one of the 75 regexes7 from
RegExLib [71] selected so that 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5 is not empty. This benchmark
is inspired by spam filtering, where we want to test whether a new filter 𝑟5 adds
anything to existing filters. We transformed this problem into the inclusion 𝑟5 ⊆
𝑟1∧𝑟2∧𝑟3∧𝑟4, and kept the original form for BISIM which expects an equivalence.

b-param has 8 parametric problems. Four are from [40]:
(1) [a-c]a[a-c]{𝑛+1} ∩[a-c]a[a-c]{𝑛} (long strings),
(2)

⋂𝑛
𝑖=1 ([0-1]{𝑖−1}0[0-1]{𝑛−1}0[0-1]{𝑛− 𝑖}𝛼𝑖)|([0-1]{𝑖−1}1[0-1]{𝑛−

1}1[0-1]{𝑛− 𝑖}𝛼𝑖) (exponential branching),
(3)

⋂𝑛
𝑖=1 .*(.{𝑝10+𝑖})+𝛼𝑖 (exponential paths 1), and

(4)
⋂𝑛

𝑖=1 .+𝛼𝑖0(.{𝑝10+𝑖})+ (exponential paths 2), where 𝛼1, . . . , 𝛼𝑛 are disjoint
character classes and 𝑝 𝑗 is the 𝑗-th prime number. Another four are from [28]:
(5) ˆ.[01]*.1.[01]{n}.$ \ˆ.[01]*.0.[01]{n-1}.$ (sat. difference),
(6) ˆ.[01]*.1.1.[01]{n}.$ \ˆ.[01]*.0.[01]{n+1}.$ (unsat. difference),
(7) ˆ.[01]*.1.[01]{n}.$∩ˆ.[01]*.0.[01]{n-1}.$ (sat. intersection) and
(8) ˆ.[01]*.1.[01]{n}.$∩ˆ.[01]*.0.[01]{n}.$ (unsat. intersection). For (1)
we chose 𝑛 ∈ {50,100, . . . ,500}, for (2)-(4) we chose 𝑛 ∈ {2,3, . . . ,60} and for (5)-
(8) we chose 𝑛 ∈ {50,100, . . . ,1000}.

6 We did not attempt to generate purely random problems. First, purely random automata gen-
erated e.g. by [74] seem to have different characteristics than automata coming from practical
problems (e.g. in [12,39]). Second, although generating random NFA is possible with a gen-
erator controlled by three simple parameters which give a manageable parameter-value space
covering all NFA, it is not clear how to similarly generate random AFA or BRE. On the other
hand, we do include a benchmark based on randomly generated LTL formulae, which we con-
sider relatively close to realistic LTL specifications.

7 https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/
src/main/java/regexconverter/pattern%4075.txt

https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt
https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt


Reasoning about Regular Properties: A Comparative Study 11

AFA Benchmark. The second group of examples contains AFA not easily convertible
to BRE. Here we can run only tools that handle general AFA emptiness. Some of these
benchmarks also have large sets of minterms (easily reaching to thousands) and com-
plex formulae in the AFA transition function, hence converting them to restricted forms
such such as separated DNF or explicit may be very costly. This also seems to be the
main reason for which our implementation of [41] could not compete.

a-ltlf-patterns comes from transformation of linear temporal logic formulae over finite
traces (LTL 𝑓 ) to AFA [34]. The 1699 formulae are from [60]8 and they represent
common LTL 𝑓 patterns which can be divided into two groups: (1) 7 parametric pat-
terns (100 each) and (2) randomly generated conjunctions of simpler LTL 𝑓 patterns
(999 formulae).

a-ltl-rand contains 300 LTL 𝑓 formulae obtained with the random generator of [77].
The generator traverses the syntactic tree of the LTL grammar, and is controlled by
the number of variables, probabilities of connectives, maximum depth, and average
depth. We have set the parameters empirically in a way likely to generate examples
difficult for the compared solvers (the formulae have 6 atomic propositions and
maximum depth 16).

a-ltl-param has a pair of hand-made parametric LTL 𝑓 formulae (160 formulae each)
used in [30,77]: Lift [43] describes a simple lift operating on a parametric number
of floors and Counter [72] describes a counter incremented modulo the parameter.

a-ltlf-spec [60] contains 62 LTL 𝑓 formulae that specify realistic systems, used by Boe-
ing [14] and NASA [42]. The formulae represent specifications used for designing
Boeing AIR 6110 wheel-braking system and for designing NASA NextGen air traf-
fic control (ATC) system.

a-sloth 4062 AFA emptiness problems to which the string solver Sloth reduced string
constraints [47]. The AFA have complex multi-track transitions encoding Boolean
operations and transductions, and a special kind of synchronization of traces re-
quiring complex initial and final conditions.

a-noodler 13840 AFA emptiness problems that correspond to certain sub-problems
solved within the string solver Noodler in [10]. The AFA were created similarly as
those of a-sloth, but encode a different particular set of operations over different
input automata.

5 The Comparison

We ran our experiments on Debian GNU/Linux 11, with Intel Core 3.4GHz processor, 8
CPU cores, and 20 GB RAM. All experiments were run with the timeout of 60 seconds
(increasing the timeout did not have a significant impact). Additional details as well as
the virtual machine with the entire benchmark are available at [2].

Benchmarking infrastructure. The initial difficulty is that the tools expect different in-
put formats and forms of automata and the benchmarks come in different formats as
well. We converted all benchmarks to our internal AFA format, from which we gen-
erated formats supported by the AFA handling tools JALTIMPACT, BWIC3, ANTISAT,

8 https://drive.google.com/file/d/1eOYGvm3C8sQ-9iyfZ8qx42K54hgrFNTC

https://drive.google.com/file/d/1eOYGvm3C8sQ-9iyfZ8qx42K54hgrFNTC


12 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

and BISIM, or we extend the tools with a parser. The BRE benchmarks come from
various sources. We first convert them into a master file which specifies the Boolean
combination of atomic NFA, each atomic NFA stored in a separate file. The SMT-
lib format is generated for Z3 and CVC5. In the case of b-hand-made, b-param, and
b-smt, the atomic automata are translated from regular expressions using the parser
of BRICS, while in the case of b-regex, where the regexes contain features not sup-
ported by BRICS, we use the parser from BISIM. b-smt and b-hand-made requires first
translating from SMT-lib to a regular expression. In the case of b-armc-incl, the atomic
automata come directly as NFAs, and are converted into formats of the individual BRE
solvers (we again wrote parsers for some of the solvers), and to our AFA format for the
AFA solvers. Every BRE solver was extended by an interpreter of the master file that
reads the NFA/DFA from the generated solver-specific files (except the SMT solvers,
which read SMT-lib). We note that due to some difficulties with internal structures, we
currently cannot run BRICS on b-armc-incl, and due to the lack of a converter from
complex regular expressions and from pure NFA to the SMT format, we do not run Z3
and CVC5 on b-regex and on b-armc-incl.

Measured data. We will present the results obtained with BRE (where we run all the
tools) and with AFA emptiness (where we run BWIC3, ANTISAT, BISIM, and JALTIM-
PACT) separately. We also separate the results on examples from applications from re-
sults on parametric hand-made examples.

Table 1 summarizes the statistics from evaluating the benchmarks. The table lists:
(i) the average time, (ii) the median time, and (iii) the number of timeouts and number of
errors (mostly, a tool ran out of the memory, made a bad alloc or ran into a segmentation
fault). A few errors, e.g. in CVC5 or BISIM, were due to the unsupported features in the
inputs. The tools’ performance is then visualised on cactus plots in Fig. 1. For each tool,
the plot shows the progress of the tool on each benchmark: the 𝑦 axis is the cumulative
time taken on the benchmark, with the individual examples on the 𝑥 axis ordered by the
runtime taken by the tool. Timeouts are omitted. In the appendix, we also show a set of
scatter-plots that compare for every benchmark the three best performing tools.

Finally, we compared the tools on the parametric benchmarks a-ltl-param and b-
param. We illustrate the results in Fig. 2. Each graph shows the times for the increasing
value of the specific parameter on the 𝑥 axis.

5.1 Discussion
Based on the measurements, we make several observations.

Firstly, the tool which combines universality (it can be run on AFA as well as on
BRE emptiness) with the most consistent good performance is BWIC3. It dominates
most of the AFA emptiness benchmark, shows great or a very good performance on
the BRE benchmark, and often stands out on the parametric examples. Moreover, the
measurements reported in [28] suggest that the backward BTS reduction has even more
potential. This is visible namely from the comparison of our results on the parametric
benchmarks diff-sat, diff-unsat, inter-sat, and inter-unsat. Our implementation matched
the result of [28] on diff-sat and partially on inter-sat, saw a worse trend on diff-unsat
and much worse trend on inter-unsat. A likely culprit is a different underlying model-
checker, ABC [17] in our implementation versus IC3Ref [16] in [28]. However, IC3Ref



Reasoning about Regular Properties: A Comparative Study 13

Table 1. Summary of AFA and BRE benchmarks. Table lists (i) the average, (ii) the median, and
(iii) the number of timeouts and errors (in brackets). Winners are highlighted in bold.

a-ltl-rand a-ltl-spec a-ltlf-patterns a-noodler a-sloth a-ltl-param
(300) (62) (1 699) (13 840) (4 062) (320)

BWIC3 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 0.1 3 1.3 0.1 34 25.4 0.6 134
BISIM 4.4 1.0 8 32.9 60.0 32 37.0 60.0 1013 31.6 26.4 6644(8) 17.5 1.5 1087(10) 58.2 60.0 308
JALTIMPACT 7.9 2.3 12 2.4 1.4 0(1) 4.0 2.8 0 3.8 1.8 186 24.1 15.4 958 47.0 60.0 205
ANTISAT 18.3 0.1 84 0.0 0.0 0 31.0 60.0 868 0.4 0.0 57 14.9 0.0 991 58.3 60.0 310

b-armc-incl b-hand-made b-regex b-smt b-param
(171) (56) (500) (330) (267)

BWIC3 5.2 1.1 1 0.4 0.1 0 0.2 0.1 0 0.1 0.1 0 44.9 60.0 191
BISIM 28.5 9.5 72 11.2 1.0 8 3.8 1.3 15 2.5 2.5 0 55.4 60.0 240
BRICS - 3.9 0.4 3 5.8 0.8 40 0.3 0.3 0 52.7 60.0 228
CVC5 - 27.4 0.8 10(15) - 0.8 0.2 1 48.6 60.0 208
AUTOMATA 3.5 0.4 9 0.2 0.2 0 0.2 0.2 0 0.2 0.2 0 46.3 60.0 161(42)
JALTIMPACT 30.9 24.6 63 11.1 3.6 5 12.2 2.4 48 3.5 3.5 0 57.8 60.0 252
ANTISAT 42.8 60.0 118 1.4 0.0 1 9.3 1.4 45 0.0 0.0 0 39.0 60.0 147
MONA 28.5 44.1 43 27.3 0.1 22(3) 41.0 60.0 15(298) 1.5 0.0 8 44.9 60.0 25(169)
ENFA 1.9 0.8 0 0.1 0.0 0 0.2 0.1 0 0.0 0.0 0 44.6 60.0 143(51)
VATA 2.6 3.4 0 0.1 0.0 0 2.1 0.2 10(1) 0.0 0.0 0 37.8 60.0 155(1)
Z3 - 3.9 0.0 2 - 0.4 0.0 2 32.0 48.1 129

was not used out of the box in [28], harnessing it efficiently for problems of our king is
not entirely trivial.

Secondly, the results on application related BRE (all BRE except the parametric ex-
amples in b-param) quite surprisingly favour the tools based mostly on relatively basic
NFA algorithms. The overall best is the simplest tool of all, our implementation ENFA
of basic NFA constructions. Close to the performance of ENFA is VATA, which uses
the antichain inclusion checking on b-armc-incl and b-regex (the fact that explicit com-
plementation of ENFA is faster than the antichain of VATA suggests that the inclusion
benchmarks are not particularly hard). VATA specialises to the more general tree au-
tomata, which probably causes unnecessary overhead. AUTOMATA also performs well.
It uses slightly more advanced algorithms than ENFA (such as lazy evaluation of dif-
ference, though, without antichain pruning). Its symbolic representation of transition
functions with BDDs probably does not provide much advantage here. This result chal-
lenges the view that translating complex problems, arising for instance in string con-
straint solving, into AFA in order to use the sophisticated machinery of AFA solvers
is an obvious silver bullet. Organizing the computation into smaller NFA operations,
where, moreover, partial results can be minimized and re-used, and a simpler and hence
more flexible NFA technology is used, might be a better strategy (this seems to work
very well for instance in our recent prototype string constraint solver [10]).

Our AFA emptiness test ANTISAT based on the antichain algorithm and a SAT
solver has an interesting performance. As can be seen on the cactus plots, besides its
absolute domination on a-ltlf-spec, it is significantly faster than other tools on a large
portion of the other AFA emptiness benchmark, but struggles on the rest. The exam-
ples where it dominates are often automata with the structure resembling a lasso (or
several lassos) with a long handle. The other implementation of an antichain algorithm,
NFA/NTA inclusion in VATA, also shows a good performance. This together points on
the overall strength of antichain algorithms.



14 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

0 250 500 750
1000

1250
1500

1750

0

100

101

102

103

104

tim
e 

[s
]

a-ltlf-patterns
Antisat
Bisim
JaltImpact
bwIC3

0 50 100 150 200 250 300

0

100

101

102

103

a-ltl-rand
Antisat
Bisim
JaltImpact
bwIC3

0 500
1000

1500
2000

2500
3000

3500
4000

0

100

101

102

103

104

a-sloth
Antisat
Bisim
JaltImpact
bwIC3

0
2000

4000
6000

8000
10000

12000
14000

0

100

101

102

103

104

tim
e 

[s
]

a-noodler
Antisat
Bisim
JaltImpact
bwIC3

0 10 20 30 40 50 60

0

100

101

102

a-ltl-spec
Antisat
Bisim
JaltImpact
bwIC3

0 10 20 30 40 50

0

100

101

102

b-hand-made
Antisat
Automata
Bisim
Brics
CVC5
JaltImpact
Mona
VATA
Z3
bwIC3
eNfa

0 25 50 75 100 125 150 175
benchmark

0

100

101

102

103

tim
e 

[s
]

b-armc-incl
Antisat
Automata
Bisim
JaltImpact
Mona
VATA
bwIC3
eNfa

0 100 200 300 400 500
benchmark

0

100

101

102

103

b-regex
Antisat
Automata
Bisim
Brics
JaltImpact
Mona
VATA
bwIC3
eNfa

0 50 100 150 200 250 300
benchmark

0

100

101

102

103

b-smt
Antisat
Automata
Bisim
Brics
CVC5
JaltImpact
Mona
VATA
Z3
bwIC3
eNfa

Fig. 1. Cactus plots of AFA and BRE benchmarks. The 𝑦 axis is the cumulative time taken on the
benchmark in logarithmic scale, benchmark on the 𝑥 axis are ordered by the runtime of each tool.

The SMT string constraint solvers are not among the best in the benchmark related
to practical applications, but are competitive (especially Z3), and win on some paramet-
ric cases. This may be due to that various heuristics unique to SMT solvers, especially
rewriting that reduces one type of a constraint to another, kicks in. For instance, Z3
seems to solve exppaths1 with a help of rewriting to the sub-string constraint in the
theory of sequences. In general, the measurements on parametric examples underscore
the fact that no algorithm is universally the best and their relative performance may vary
drastically depending on the kind of an input.



Reasoning about Regular Properties: A Comparative Study 15

50 150 250 350 450 550 650 750 850 950
k

0

20

40

60

du
ra

tio
n

diff_sat

50 150 250 350 450 550 650 750 850 950
k

diff_unsat

50 150 250 350 450 550 650 750 850 950
k

inter_sat

50 150 250 350 450 550 650 750 850 950
k

0

20

40

60

du
ra

tio
n

inter_unsat

2 5 8 11 14 17 20 23 26 29 32 35 38
k

expbranching

2 7 12 17 22 27 32 37 42 47 52 57
k

0

20

40

60

du
ra

tio
n

exppaths1

Antisat
Automata
Bisim
Brics
CVC5
JaltImpact

Mona
VATA
Z3
bwIC3
eNfa

2 7 12 17 22 27 32 37 42 47 52 57
k

exppaths2

50 100 150 200 250 300 350 400 450 500
k

0

20

40

60

du
ra

tio
n

longstrings

0 3 6 11 14 17 20 23 26 30 33
k

counter_afas

0 16 32 48 64 80 96 112 128 144
k

lift_afas

Fig. 2. Models of runtime on parametric benchmarks based on specific parameter 𝑘 with timeout
60s. The sawtooths represent the tool failed on the benchmark for some 𝑘 while solving bench-
marks for 𝑘−1 and 𝑘 +1. For brevity, we draw the models only until they start continually failing.

Although the mediocre performance of the other tools can be partially explained by
their focus on a different kind of a problem or a dated underlying technology, and each
of them is respectable in its own right, a point can be made against relying on them
as a baseline in comparisons of tools for solving our kind of problem. MONA, opti-
mized for a different settings (complex alphabets of bit-vectors with many minterms),
is held back by the implicit determinization, and, in our case, probably by the over-
head of the symbolic representation. It also frequently runs out of the 32-bit address
space for BDD nodes. Similarly for BRICS, which also always determinizes. The low
performance of BISIM is surprising relative to the good results of the up-to algorithms
reported in [11,30]. It is more consistent with [39] where up-to algorithms were not
wining against antichains on the more practical examples. Our results however do not
directly contradict the results of [30] itself, since it does not compare with the fast tools
identified here and stands to a large degree on parametric and random benchmarks.
There is also always the possibility that we have prepared the input in a way not ideal
for the tool. For instance, transformation to the separated AFA, required by BISIM, is
not entirely trivial. Further investigation of this and a comparison with some other im-
plementation of the up-to techniques seems to be needed.9 The lack of a raw speed of
JALTIMPACT on BRE and AFA emptiness is expectable considering that it is meant
for a different kind of systems, AFA over data words. The stable trends shown in the
graphs suggest that an implementation of an interpolation-based abstraction refinement
optimized for BRE and AFA emptiness might have a potential.

Main takeaways. The backward reduction of AFA emptiness to BTS reachability in a
combination with IC3 is very fast and extremely versatile, showing very good perfor-
mance on almost all benchmarks. However, on BRE with a relation to a real world appli-
cation, simple NFA algorithms actually tend to have the best raw performance, with the
simplest implementation of NFA being the best. Antichain algorithms work also well,

9 It was noted by the author of BISIM that a version of the tool from the year 2016 might be
faster. We were however not able to compile it.



16 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

even significantly better than other algorithms on specific kinds of AFA. These seem to
be the tools to use. Reasonable implementations of the backward BTS reduction with
IC3, of antichain, and of basic NFA should also be the baseline of comparisons.

MONA and BRICS, based on DFA, as well as JALTIMPACT focused on data words
rather then on pure regular properties, do no reach the performance of the best tools.
Also BISIM did not confirm the power of up-to algorithms. SMT-solvers, Z3 especially,
are competitive, but cannot be considered the top of state of the art.

Generally, the particular kind and source of benchmark is a decisive factor influenc-
ing the performance of tools, as especially visible on the parametric benchmark.

Threads to validity. Our results must be taken with a grain of salt as the experiment
contains an inherent room for error. Although we tried to be as fair as possible, not
knowing every tool intimately, the conversions between formats and kinds of automata,
discussed at the start of Section 5, might have introduced biases into the experiment.
Tools are written in different languages and some have parameters which we might have
used in sub-optimal way (we use the tools in their default settings), or, in the case of
libraries, we could have used a sub-optimal combination of functions. We also did not
measure memory peaks, which could be especially interesting e.g. in when the tools
are deployed on a cloud. We are, however, confident that our main conclusions are
well justified and the experiment gives a good overall picture. The entire experiment is
available for anyone to challenge or improve upon [2].

Acknowledgments

This work has been supported by the Czech Ministry of Education, Youth and Sports
ERC.CZ project LL1908, and the FIT BUT internal project FIT-S-20-6427.

References

1. The benchmark used in the paper., https://github.com/VeriFIT/automata-bench
2. Experiment replication package and additional material, https://www.fit.vutbr.cz/

research/groups/verifit/tools/afa-comparison/
3. Jaltimpact, https://github.com/cathiec/JAltImpact
4. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holı́k, L., Rezine, A., Rümmer, P.: Trau:

SMT solver for string constraints. In: Proc. of FMCAD’18. IEEE (2018)
5. Abdulla, P.A., Atig, M.F., Diep, B.P., Holı́k, L., Janku, P.: Chain-free string constraints. In:

Proc. of ATVA’19. LNCS, vol. 11781. Springer (2019)
6. Abdulla, P.A., Chen, Y.F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains.

In: Proc. of TACAS’10. LNCS, vol. 6015. Springer (2010)
7. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A.,

Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng,
Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-strength SMT solver. In: Proc.
of TACAS’22. Springer (2022)

8. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

https://github.com/VeriFIT/automata-bench
https://www.fit.vutbr.cz/research/groups/verifit/tools/afa-comparison/
https://www.fit.vutbr.cz/research/groups/verifit/tools/afa-comparison/
https://github.com/cathiec/JAltImpact


Reasoning about Regular Properties: A Comparative Study 17

9. Berzish, Murphy: Z3str4: A Solver for Theories over Strings. Ph.D. thesis (2021), http:
//hdl.handle.net/10012/17102

10. Blahoudek, F., Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Word
equations in synergy with regular constraints. In: Proc. of FM’23. Springer (2023)

11. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Proc. of POPL’13. ACM (2013)

12. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based universal-
ity and inclusion testing over nondeterministic finite tree automata. In: Proc. of CIAA’08.
Springer (2008)

13. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite automata.
In: Kirchner, H. (ed.) Proc. of CAAP’96. LNCS, vol. 1059. Springer (1996)

14. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., Robinson,
R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel brake system. In: Proc.
of CAV’15. Springer (2015)

15. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterexamples
to induction. In: Proc. of FMCAD’07. IEEE (2007)

16. Bradley, A.: IC3 reference implementation: a short, simple, fairly competitive implementa-
tion of IC3 (2015), https://github.com/arbrad/IC3ref

17. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In:
Proc. of CAV’10. Springer (2010)

18. Brzozowski, J., Leiss, E.: On equations for regular languages, finite automata, and sequential
networks. Theoretical Computer Science 10(1) (1980)

19. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events.
In: Proc. of Symposium on Mathematical Theory of Automata (1962)

20. Büchi, J.R.: Weak Second-Order Arithmetic and Finite Automata, pp. 398–424. Springer
New York, New York, NY (1990). https://doi.org/10.1007/978-1-4613-8928-6_22,
https://doi.org/10.1007/978-1-4613-8928-6_22

21. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. of Interna-
tional Congress on Logic, Method, and Philosophy of Science. SUP (1962)

22. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Proc. of CAV’14. Springer
(2014)

23. Cécé, G.: Foundation for a series of efficient simulation algorithms. In: Proc. of LICS’17.
IEEE (2017)

24. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1) (1981)
25. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string constraints

with the replaceall function. Proc. of POPL’18 (2018)
26. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path feasibility

of string-manipulating programs with complex operations. Proc. of POPL’19 (2019)
27. Cox, A.: Model Checking Regular Expressions. URL: https://mosca19.github.io/

slides/cox.pdf (2019), presented at MOSCA’19
28. Cox, A., Leasure, J.: Model checking regular language constraints. CoRR abs/1708.09073

(2017)
29. D’Anthoni, L.: A symbolic automata library, https://github.com/lorisdanto/

symbolicautomata
30. D’Antoni, L., Kincaid, Z., Wang, F.: A symbolic decision procedure for symbolic alternating

finite automata. Electronic Notes in Theoretical Computer Science 336 (2018)
31. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: Proc. of

CAV’17. Springer
32. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Proc. of POPL’14. ACM

(2014)

http://hdl.handle.net/10012/17102
http://hdl.handle.net/10012/17102
https://github.com/arbrad/IC3ref
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://doi.org/10.1007/978-1-4613-8928-6_22
https://mosca19.github.io/slides/cox.pdf
https://mosca19.github.io/slides/cox.pdf
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata


18 T. Fiedor, L. Holı́k, M. Hruška, A. Rogalewicz, J. Sı́č, P. Vargovčı́k

33. D’Antoni, L., Veanes, M.: Minimization of symbolic tree automata. In: Proc. of LICS’16.
ACM (2016)

34. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: Proc. of IJCAI’13. ACM (2013)

35. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.F.: Alaska. In: Proc. of ATVA’08. Springer
(2008)

36. Doyen, L., Raskin, J.: Antichain algorithms for finite automata. In: Proc. of TACAS’10.
LNCS, Springer (2010)

37. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of SAT’03. LNCS, Springer
(2003)

38. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. International
Journal of Computer Mathematics 35 (1990)

39. Fu, C., Deng, Y., Jansen, D.N., Zhang, L.: On equivalence checking of nondeterministic finite
automata. In: Proc. of SETTA’17. LNCS, Springer (2017)

40. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded model-
checking with interpolation for regular language constraints. In: Proc. of TACAS’13. LNCS,
Springer (2013)

41. Ganty, P., Maquet, N., Raskin, J.: Fixed point guided abstraction refinement for alternating
automata. Theoretical Computer Science 411(38-39) (2010)

42. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking at scale:
Automated air traffic control design space exploration. In: Proc. of CAV’16. Springer (2016)

43. Harding, A.: Symbolic strategy synthesis for games with LTL winning conditions. Ph.D.
thesis, University of Birmingham (2005)

44. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sand-
holm, A.: Mona: Monadic second-order logic in practice. In: Proc. of TACAS ’95. LNCS,
vol. 1019. Springer (1995)

45. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. of FOCS. IEEE (1995)

46. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: SAT’12. LNCS,
vol. 7317, pp. 157–171. Springer (2012)

47. Holı́k, L., Janků, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with concatenation
and transducers solved efficiently. Proc. of POPL’18 2 (2018)

48. Holı́k, L., Lengál, O., Sı́č, J., Veanes, M., Vojnar, T.: Simulation algorithms for symbolic
automata. In: Lahiri, S.K., Wang, C. (eds.) Proc. of ATVA’18. Springer (2018)

49. Holı́k, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient inclusion checking on explicit and
semi-symbolic tree automata. In: Proc. of ATVA’11. LNCS, Springer (2011)

50. Holı́k, L., Šimáček, J.: Optimizing an LTS-simulation algorithm. Computing and Informatics
(7), 1337–1348 (2010)

51. Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over regular lan-
guages. In: PLDI’09. ACM (2009)

52. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. Tech. rep.,
Stanford, CA, USA (1971)

53. Hromkovič, J.: On the power of alternation in automata theory. Journal of Computer and
System Sciences 31(1) (1985)

54. Huffman, D.: The synthesis of sequential switching circuits. Journal of the Franklin Institute
257(3) (1954)

55. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Theory Is Forever: Essays Dedicated to
Arto Salomaa on the Occasion of His 70th Birthday. Springer (2004)

56. Iosif, R., Xu, X.: Abstraction refinement for emptiness checking of alternating data automata.
In: Proc. of TACAS’18. Springer (2018)



Reasoning about Regular Properties: A Comparative Study 19

57. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transac-
tions on Computational Logic 2(3) (2001)

58. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time
model checking. Journal of ACM 47(2) (2000)

59. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-
deterministic tree automata. In: Proc. of TACAS’12. LNCS, vol. 7214. Springer (2012)

60. Li, J., Pu, G., Zhang, Y., Vardi, M.Y., Rozier, K.Y.: SAT-based explicit LTLf satisfiability
checking. Artificial Intelligence 289 (2020)

61. Lutterkort, D.: libfa, https://augeas.net/libfa/
62. McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. of CAV’03.

Springer (2003)
63. McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. of CAV’06. LNCS, vol. 4144.

Springer (2006)
64. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata Studies. Volume

34. Princeton University Press, Princeton (1956)
65. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS’08. Springer

(2008)
66. Muller, D., Saoudi, A., Schupp, P.: Weak alternating automata give a simple explanation of

why most temporal and dynamic logics are decidable in exponential time. In: Proc. of LICS.
IEEE (1988)

67. Møller, A., et al.: Brics automata library, https://www.brics.dk/automaton/
68. Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C., Tinelli, C.: Even faster conflicts and lazier

reductions for string solvers. In: Proc. of CAV’22. Springer (2022)
69. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing

16(6) (1987)
70. Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract interpretation.

Information and Computation 208, 1–22 (2010)
71. RegExLib.com: The Internet’s first Regular Expression Library. http://regexlib.com/
72. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Proc. of SPIN’07. Springer (2007)
73. Stanford, C., Veanes, M., Bjørner, N.S.: Symbolic boolean derivatives for efficiently solving

extended regular expression constraints. In: Proc. of PLDI’21. ACM (2021)
74. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata constructions. In:

Proc. of LPAR’05. Springer (2005)
75. Valmari, A.: Simple bisimilarity minimization in O(m log n) time. Fundamenta Informaticae

105(3) (2010)
76. Vardi, M.Y.: Nontraditional applications of automata theory. In: Theoretical Aspects of Com-

puter Software. Springer (1994)
77. Vargovčı́k, P., Holı́k, L.: Simplifying alternating automata for emptiness testing. In: Proc. of

APLAS’21. Springer (2021)
78. Veanes, M.: A .NET automata library, https://github.com/AutomataDotNet/Automata
79. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic regular expression explorer. In:

Proc. of ICST’10. IEEE (2010)
80. Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R.: String analysis via automata manipulation

with logic circuit representation. In: Proc. of CAV’16. LNCS, vol. 9779. Springer (2016)
81. Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic constraints

(extended abstract). In: Mycroft, A. (ed.) Proc. of SAS’95. LNCS, vol. 983. Springer (1995)
82. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.: Antichains: A new algorithm for check-

ing universality of finite automata. In: Proc. of CAV’06. LNCS, vol. 4144. Springer (2006)

https://augeas.net/libfa/
https://www.brics.dk/automaton/
http://regexlib.com/
https://github.com/AutomataDotNet/Automata

	Reasoning about Regular Properties: A Comparative Study 

